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List of Elements with Their Symbols and Atomic Masses

Element Symbol
Atomic 

Number
Atomic  
Mass

Actinium Ac 89 227.03a

Aluminum Al 13 26.98
Americium Am 95 243.06a

Antimony Sb 51 121.76
Argon Ar 18 39.95
Arsenic As 33 74.92
Astatine At 85 209.99a

Barium Ba 56 137.33
Berkelium Bk 97 247.07a

Beryllium Be 4 9.012
Bismuth Bi 83 208.98
Bohrium Bh 107 264.12a

Boron B 5 10.81
Bromine Br 35 79.90
Cadmium Cd 48 112.41
Calcium Ca 20 40.08
Californium Cf 98 251.08a

Carbon C 6 12.01
Cerium Ce 58 140.12
Cesium Cs 55 132.91
Chlorine Cl 17 35.45
Chromium Cr 24 52.00
Cobalt Co 27 58.93
Copernicium Cn 112 285a

Copper Cu 29 63.55
Curium Cm 96 247.07a

Darmstadtium Ds 110 271a

Dubnium Db 105 262.11a

Dysprosium Dy 66 162.50
Einsteinium Es 99 252.08a

Erbium Er 68 167.26
Europium Eu 63 151.96
Fermium Fm 100 257.10a

Flerovium Fl 114 289a

Fluorine F 9 19.00
Francium Fr 87 223.02a

Gadolinium Gd 64 157.25
Gallium Ga 31 69.72
Germanium Ge 32 72.63
Gold Au 79 196.97
Hafnium Hf 72 178.49
Hassium Hs 108 269.13a

Helium He 2 4.003
Holmium Ho 67 164.93
Hydrogen H 1 1.008
Indium In 49 114.82
Iodine I 53 126.90
Iridium Ir 77 192.22
Iron Fe 26 55.85
Krypton Kr 36 83.80
Lanthanum La 57 138.91
Lawrencium Lr 103 262.11a

Lead Pb 82 207.2
Lithium Li 3 6.94
Livermorium Lv 116 292a

Lutetium Lu 71 174.97
Magnesium Mg 12 24.31
Manganese Mn 25 54.94
Meitnerium Mt 109 268.14a

Element Symbol
Atomic 

Number
Atomic  
Mass

Mendelevium Md 101 258.10a

Mercury Hg 80 200.59
Molybdenum Mo 42 95.95
Moscovium Mc 115 289a

Neodymium Nd 60 144.24
Neon Ne 10 20.18
Neptunium Np 93 237.05a

Nickel Ni 28 58.69
Nihonium Nh 113 284a

Niobium Nb 41 92.91
Nitrogen N 7 14.01
Nobelium No 102 259.10a

Oganesson Og 118 294a

Osmium Os 76 190.23
Oxygen O 8 16.00
Palladium Pd 46 106.42
Phosphorus P 15 30.97
Platinum Pt 78 195.08
Plutonium Pu 94 244.06a

Polonium Po 84 208.98a

Potassium K 19 39.10
Praseodymium Pr 59 140.91
Promethium Pm 61 145a

Protactinium Pa 91 231.04
Radium Ra 88 226.03a

Radon Rn 86 222.02a

Rhenium Re 75 186.21
Rhodium Rh 45 102.91
Roentgenium Rg 111 272a

Rubidium Rb 37 85.47
Ruthenium Ru 44 101.07
Rutherfordium Rf 104 261.11a

Samarium Sm 62 150.36
Scandium Sc 21 44.96
Seaborgium Sg 106 266.12a

Selenium Se 34 78.97
Silicon Si 14 28.09
Silver Ag 47 107.87
Sodium Na 11 22.99
Strontium Sr 38 87.62
Sulfur S 16 32.06
Tantalum Ta 73 180.95
Technetium Tc 43 98a

Tellurium Te 52 127.60
Tennessine Ts 117 294a

Terbium Tb 65 158.93
Thallium Tl 81 204.38
Thorium Th 90 232.04
Thulium Tm 69 168.93
Tin Sn 50 118.71
Titanium Ti 22 47.87
Tungsten W 74 183.84
Uranium U 92 238.03
Vanadium V 23 50.94
Xenon Xe 54 131.293
Ytterbium Yb 70 173.05
Yttrium Y 39 88.91
Zinc Zn 30 65.38
Zirconium Zr 40 91.22

aMass of longest-lived or most important isotope.
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To the Student
In this book, I tell the story of chemistry, a field of science that has not 
only revolutionized how we live (think of drugs designed to cure diseases 
or fertilizers that help feed the world), but also helps us to understand 
virtually everything that happens all around us all the time. The core of 
the story is simple: Matter is composed of particles, and the structure of 
those particles determines the properties of matter. Although these two 
ideas may seem familiar to you as a twenty-first-century student, they were 
not so obvious as recently as 200 years ago. Yet, they are among the most 
powerful ideas in all of science. You need not look any further than the ad-
vances in biology over the last half-century to see how the particulate view 
of matter drives understanding. In the last 50 years, we have learned how 
all living things derive much of what they are from the particles (especially 
proteins and DNA) that compose them. I invite you to join the story as 
you read this book. Your part in its unfolding is yet to be determined, and 
I wish you the best as you start your journey.

Nivaldo J. Tro
tro@westmont.edu

To the Professor
First and foremost, thanks to all of you who adopted this book in its first 
edition. You made this book the market-leading atoms-first book. I am 
grateful beyond words. Second, know that I have listened carefully to your 
feedback about the first edition. The changes you see in this edition are the 
direct result of your input, as well as my own experience using the book 
in my general chemistry courses. If you are a reviewer or have contacted 
me directly, you will likely see your suggestions reflected in the changes I 
have made. Thank you.

In spite of the changes in this edition, the goal of the text remains the 
same: to tell the story of chemistry in the most compelling way possible. This 
book grew out of the atoms-first movement in General Chemistry. In a 
practical sense, the main thrust of this movement is a reordering of topics 
so that atomic theory and bonding models come much earlier than in the 
traditional approach. A primary rationale for this approach is for students 
to understand the theory and framework behind the chemical “facts” they 
are learning. For example, in the traditional approach students learn early 
that magnesium atoms tend to form ions with a charge of 2+. They don’t 
understand why until much later (when they get to quantum theory). In 
contrast, in an atoms-first approach, students learn quantum theory first 
and understand immediately why magnesium atoms form ions with a 
charge of 2+. In this way, students see chemistry as a coherent picture and 
not just a jumble of disjointed facts.

From my perspective, the atoms-first approach is better understood—
not in terms of topic order—but in terms of emphasis. Professors who 
teach with an atoms-first approach generally emphasize: (1) the particulate 

 nature of matter and (2) the connection between the structure of atoms and 
 molecules and their properties (or their function). The result of this empha-
sis is that the topic order is rearranged to make these connections earlier, 
stronger, and more often than the traditional approach. Consequently, I 
chose to name this book Chemistry: Structure and Properties, and have not 
included the phrase atoms-first in the title. From my perspective, the topic 
order grows out of the particulate emphasis, not the other way around.

In addition, by making the relationship between structure and 
 properties the emphasis of the book, I extend that emphasis beyond just 
the topic order in the first half of the book. For example, in the chapter 
on acids and bases, a more traditional approach puts the relationship be-
tween the structure of an acid and its acidity toward the end of the chap-
ter, and many professors even skip this material. In this book, I cover 
this  relationship early in the chapter, and I emphasize its importance in 
the continuing story of structure and properties. Similarly, in the chapter 
on free energy and thermodynamics, a traditional approach does not 
 emphasize the relationship between molecular structure and entropy. In 
this book, however, I emphasize this relationship and use it to tell the 
overall story of entropy and its ultimate importance in determining the 
direction of chemical reactions. In this edition, I have also changed the 
topic order in the gases chapter, so that the particulate view inherent 
in kinetic molecular theory comes at the beginning of the chapter, fol-
lowed by the gas laws and the rest of the chapter content. In this way, 
students can  understand the gas laws and all that follows in terms of the 
particulate model.

Throughout the course of writing this book and in conversations with 
many of my colleagues, I have also come to realize that the atoms-first 
 approach has some unique challenges. For example, how do you teach 
quantum theory and bonding (with topics like bond energies) when you 
have not covered thermochemistry? Or how do you find laboratory activi-
ties for the first few weeks if you have not covered chemical quantities and 
stoichiometry? I have sought to develop solutions to these challenges in this 
book. For example, I include a section on energy and its units in  Chapter 
E, “Essentials: Units, Measurement, and Problem Solving.” This section 
 introduces changes in energy and the concepts of exothermicity and en-
dothermicity. These topics are therefore in place when you need them to 
discuss the energies of orbitals and spectroscopy in Chapter 2, “Periodic 
Properties of the Elements,” and bond energies in Chapter 5, “Chemical 
Bonding I: Drawing Lewis Structures and Determining Molecular Shapes.” 
Similarly, I introduce the mole concept in Chapter 1; this placement allows 
not only for a more even distribution of quantitative homework problems, 
but also for laboratory exercises that require use of the mole concept.

In addition, because I strongly support the efforts of my colleagues at 
the Examinations Institute of the American Chemical Society, and  because 
I have sat on several committees that write the ACS General Chemistry 
exam, I have ordered the chapters in this book so that they can be used 
with those exams in their present form. The end result is a table of  contents 
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New to This Edition
 • Conceptual Connections and Self-Assessment Quizzes at the end of each 

chapter in the book are now embedded and interactive in eText 2.0. The 
interactive quizzes help students to study and test their understanding in 
real time. Quizzes are algorithmically coded into MasteringChemistry™ 
to allow students to practice the types of questions they will encounter 
on the ACS or other exams.

 • I added a new chapter, Chapter E, “Essentials: Units, Measurement, 
and Problem Solving.” This material, located in Appendices I and II 
and Chapter 2 in the first edition, was moved to the front of the book 
to provide a foundation for students who need some review in these 
areas.

 • I revised Chapter 1, “Atoms,” to include a more personal introduc-
tion that documents my own introduction into the world of atoms.  
I also moved the mole concept for atoms, covered in Chapter 2 in the 
first edition, into Chapter 1 in the second edition.

 • I moved phase diagrams into Chapter 11, “Liquids, Solids, 
 Intermolecular Forces, and Phase Diagrams,” to immediately follow 
the coverage of liquids, solids, and intermolecular forces.

 • The chemistry of modern materials is now covered in Chapter 12, 
 “Crystalline Solids and Materials,” which includes new topics as well 
as the materials content found in other parts of the book in the first 
 edition.

 • With the help of my colleagues, Thomas Greenbowe  (University 
of Oregon), Kristin Ziebert (Oregon State University), and  Michael 
Everest (Westmont College), I added two new categories of  
end-of-chapter questions designed to help students build “twenty-
first-century skills.” The first new category of questions, Data 
Interpretation and Analysis, presents real data in real-life situations 
and asks students to analyze that data. These in-depth exercises give 
students much needed practice in reading graphs, digesting tables, 
and making data-driven decisions. The second new category of 
questions, Questions for Group Work, encourages students to work 
with their peers in small groups. The questions can be assigned in 
or out of the classroom to foster collaborative learning and to allow 
students to work together in teams to solve problems.

 • I added 37 new Key Concept Videos and 50 new Interactive Worked 
Examples to the media package that accompanies the book. This 
book now has a video library of over 150 interactive videos designed 
to help professors engage their students in active learning. These 
videos are also embedded in the eText 2.0 version of the book.

 • The Key Concept Videos are brief (3 to 5 minutes), and each one 
introduces a key concept from a chapter. The student does not 
just passively listen to the video; the video stops in the middle 
and poses a question to the student. The student must answer the 
question before the video continues. Each video also includes a 
follow-up question that is assignable in MasteringChemistry™.

 • The Interactive Worked Examples are similar in concept, but 
 instead of explaining a key concept, each video walks the student 
through one of the in-chapter worked examples from the book. 
Like the Key Concept Videos, Interactive Worked Examples stop 
in the middle and force the student to interact by completing a step 
in the  example. Each example also has a follow-up question that 
is assignable in  MasteringChemistry™. The power of  interactivity 

that emphasizes structure and properties, while still maintaining the  overall 
traditional division of first- and second-semester topics.

Some of the most exciting changes and additions to this edition are 
in the media associated with the book. To enhance student engagement in 
your chemistry course, I have added approximately 37 new Key Concept 
Videos and 50 new Interactive Worked Examples to the media package, 
which now contains over 150 interactive videos. There is a more detailed 
description of these videos in the following section entitled “New to This 
Edition.” In my courses, I employ readings from the book and these videos 
to implement a before, during, after strategy for my students. My goal is to 
engage students in active learning before class, during class, and after class. 
Recent research has conclusively demonstrated that students learn better 
when they are active as opposed to passively listening and simply taking 
in content.

To that end, in addition to a reading assignment from the text, I assign 
a key concept video before each class session. Reading sections from the 
text in conjunction with viewing the video introduces students to a key 
concept for that day and gets them thinking about it before they come to 
class. Since the videos and the book are so closely linked, students get a 
seamless presentation of the content. During class, I expand on the  concept 
and use Learning Catalytics™ in MasteringChemistry™ to question my 
students. Instead of passively listening to a lecture, they interact with the 
concepts through questions that I pose. Sometimes I ask my students to 
answer  individually, other times in pairs or even groups. This approach 
has changed my classroom. Students engage in the material in new ways. 
They have to think, process, and interact. After class, I give them another 
assignment, often an Interactive Worked Example with a follow-up 
 question. They put their new skills to work in solving this assignment. 
Finally, I assign a weekly problem set in which they have to apply all that 
they have learned to solve a variety of end-of-chapter problems.

The results have been fantastic. Instead of just starting to learn the 
material the night before a problem set is due, my students are engaged 
in chemistry before, during, and after class. I have seen evidence of their 
improved learning through increases in their scores on the American 
 Chemical Society Standard General Chemistry Exam, which I always 
 administer as the final exam for my course.

For those of you who have used my other general chemistry book 
(Chemistry: A Molecular Approach), you will find that this book is a bit 
shorter and more focused and streamlined than that one. I have shortened 
some chapters, divided others in half, and completely eliminated three 
chapters (“Biochemistry,” “Chemistry of the Nonmetals,” and “Metals 
and Metallurgy”). These topics are simply not being taught much in 
many general chemistry courses. Chemistry: Structures and Properties 
is a leaner and more efficient book that fits well with current trends 
that emphasize depth over breadth. Nonetheless, the main features that 
have made Chemistry: A Molecular Approach a success continue in this 
book. For example, strong problem-solving pedagogy, clear and concise 
writing, mathematical and chemical rigor, and dynamic art are all vital 
components of this book.

I hope that this book supports you in your vocation of teaching stu-
dents chemistry. I am increasingly convinced of the importance of our task. 
Please feel free to email me with any questions or comments about the book.

Nivaldo J. Tro
tro@westmont.edu
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 • The MasteringChemistry™ data indicating which problems give 
 students the most trouble and where they need the most  assistance 
for all end-of-chapter problems were reviewed and taken into 
 account in revising the problems. Over 75% of the section problems 
have wrong answer-specific feedback.
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Dear Colleague,
In recent years, many chemistry professors, myself among them, 
have begun teaching their General Chemistry courses with an atoms-
first approach. On the surface, this approach may seem like a mere 
reordering of topics, so that atomic theory and bonding theories 
come earlier than they do in the traditional approach. A rationale for 
this reordering is that students should understand the theory and 
framework behind the chemical “facts” they are learning. For example, 
in the traditional approach, students learn early that magnesium atoms 
tend to form ions with a charge of 2+. However, they don’t understand 
why until much later (when they get to quantum theory). In an atoms-
first approach, students learn quantum theory first and are therefore 
able to understand why magnesium atoms form ions with a charge of 
2+ when they learn this fact. In this way, students see chemistry as a 
more coherent picture and not just a jumble of disjointed facts.

From my perspective, as an author and a teacher who teaches an atoms-first class, however, the   
atoms-first movement is more than just a reordering or topics. To me, the atoms-first movement is a result 
of the growing emphasis in chemistry courses on the two main ideas of chemistry, which are: 1) that matter 
is particulate, and 2) that the structure of the particles that 
compose matter determines its properties. In other words, 
the atoms-first movement is—at its core—an attempt to tell 
the story of chemistry in a more unified and thematic way. 
As a result, an atoms-first textbook must be more than a 
rearrangement of topics: it must tell the story of chemistry 
through the lens of the particulate model of matter. That is 
the goal I attempted to accomplish with Chemistry: Structure 
and Properties. Thanks to all of you who made the first edition 
the best-selling atoms-first book on the market. With this, 
the second edition, I continue to refine and improve on the 
approach taken in the first edition. My continuing hope is that 
students will recognize the power and beauty of the simple 
ideas that lie at the core of chemistry, and that they learn to 
apply them to see and understand the world around them in 
new ways.

“To me, the atoms-first 

movement is a result of the 

growing emphasis in 

chemistry courses on the two 

main ideas of chemistry: 

1) that matter is particulate, 

and 2) that the structure of the 

particles that compose matter 

determines its properties.”

Why Structure and Properties?
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Structure and properties: A unified theme  
through the entire book

113

“It is the function of science to discover 

the existence of a general reign of order 

in nature and to find the causes 

governing this order.”

—Dmitri Mendeleev (1834–1907)

Periodic Properties of 
the Elements3

CHAPTER 

The majority of the material that composes most aircraft is aluminum.

G REAT ADVANCES IN SCIENCE occur not 

only when a scientist sees something new, but 

also when a scientist sees something everyone 

else has seen in a new way. That is what happened in 1869 

when Dmitri Mendeleev, a Russian chemistry professor, saw a 

pattern in the properties of elements. Mendeleev’s insight led 

to the development of the periodic table. Recall from Chapter 1  

that theories explain the underlying reasons for observations. 

If we think of Mendeleev’s periodic table as a compact way 

to summarize a large number of observations, then quantum 

mechanics is the theory that explains the underlying reasons. Quantum mechanics explains how 

electrons are arranged in an element’s atoms, which in turn determines the element’s properties. 

Because the periodic table is organized according to those properties, quantum mechanics elegantly 

accounts for Mendeleev’s periodic table. In this chapter, we see a continuation of this book’s 

theme—the properties of matter (in this case, the elements in the periodic table) are explained by 

the properties of the particles that compose them (in this case, atoms and their electrons).

 3.1 Aluminum: Low-Density Atoms Result in Low-Density Metal

Look out the window of almost any airplane and you will see the large sheets of aluminum that compose 
the aircraft’s wing. In fact, the majority of the plane is most likely made out of aluminum. Aluminum has 
several properties that make it suitable for airplane construction, but among the most important is its low 
density. Aluminum has a density of only 2.70 g>cm3. For comparison, iron’s density is 7.86 g>cm3, and 
platinum’s density is 21.4 g>cm3. Why is the density of aluminum metal so low?

The density of aluminum metal is low because the density of an aluminum atom is low. Few metal atoms 
have a lower mass-to-volume ratio than aluminum, and those that do can’t be used in airplanes for other 
reasons (such as their high chemical reactivity). Although the arrangements of atoms in a solid must also 
be considered when evaluating the density of the solid, the mass-to-volume ratio of the composite atoms 
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This behavior is related to the closely spaced 3d and 4s energy levels and the stability associated with a 
half-filled (as in Cr) or completely filled (as in Cu) sublevel. Actual electron configurations are 
 determined experimentally (through spectroscopy) and do not always conform to the general pattern. 
Nonetheless, the patterns we have described allow us to accurately predict electron configurations for 
most of the elements in the periodic table.

As we move across the f block (the inner transition series), the f orbitals fill. For these elements, 
the principal quantum number of the f orbitals that fill across each row is the row number minus two. 
(In the sixth row, the 4f orbitals fill, and in the seventh row, the 5f orbitals fill.) In addition, within the 
inner transition series, the close energy spacing of the 5d and 4f orbitals sometimes causes an electron 
to enter a 5d orbital instead of the expected 4f orbital. For example, the electron configuration of gado-
linium is [Xe] 6s2 4f 7 5d1 (instead of the expected [Xe] 6s2 4f 8).

 3.5 Electron Configurations and Elemental Properties

As we discussed in Section 3.4, the chemical properties of elements are largely determined by the number of 
valence electrons the elements contain. The properties of elements are periodic because the number of 
 valence electrons is periodic. Mendeleev grouped elements into families (or columns) based on observa-
tions about their properties. We now know that elements in a family have the same number of valence 
electrons. In other words, elements in a family have similar properties because they have the same 
 number of valence electrons.

Perhaps the most striking family in the periodic table is the column labeled 8A, known as the noble 
gases. The noble gases are generally inert—they are the most unreactive elements in the entire periodic 
table. Why? Notice that each noble gas has eight valence electrons (or two in the case of helium), and 
they all have full outer quantum levels. We do not cover the quantitative (or numerical) aspects of the 
quantum-mechanical model in this book, but calculations of the overall energy of the electrons within 
atoms with eight valence electrons (or two for helium) show that these atoms are particularly stable.  
In other words, when a quantum level is completely full, the overall potential energy of the electrons that 
 occupy that level is particularly low.

Recall from Section E.6 that, on the one hand, systems with high potential energy tend to change in ways 
that lower their potential energy. Systems with low potential energy, on the other hand, tend not to change—
they are stable. Because atoms with eight electrons (or two for helium) have particularly low potential energy, 
the noble gases are stable—they cannot lower their energy by reacting with other atoms or molecules.

We can explain a great deal of chemical behavior with the simple idea that elements without a 
noble gas electron configuration react to attain a noble gas configuration. This idea applies particularly 
well to main-group elements. In this section, we first apply this idea to help differentiate between 
 metals and nonmetals. We then apply the idea to understand the properties of several individual fami-
lies of elements. Lastly, we apply the idea to the formation of ions.

Metals and Nonmetals
We can understand the broad chemical behavior of the elements by superimposing one of the most 
 general properties of an element—whether it is a metal or nonmetal—with its outer electron configura-
tion in the form of a periodic table (Figure 3.11 ▶). Metals lie on the lower left side and middle of the 
periodic table and share some common properties: They are good conductors of heat and electricity; they 
can be pounded into flat sheets (malleability); they can be drawn into wires (ductility); they are often 
shiny; and most importantly, they tend to lose electrons when they undergo chemical changes.

For example, sodium is among the most reactive metals. Its electron configuration is 1s2 2s2 2p6 3s1. 
Notice that its electron configuration is one electron beyond the configuration of neon, a noble gas. 
Sodium can attain a noble gas electron configuration by losing that one valence electron—and that is 
exactly what it does. When we find sodium in nature, we most often find it as Na+, which has the 
 electron configuration of neon (1s2 2s2 2p6). The other main-group metals in the periodic table behave 
similarly: They tend to lose their valence electrons in chemical changes to attain noble gas electron 
configurations. The transition metals also tend to lose electrons in their chemical changes, but they do 
not generally  attain noble gas electron configurations.

8A

Noble
gases

3s23p6

18
Ar

2s22p6

10
Ne

1s2

2
He

36
Kr

5s25p6

54
Xe

6s26p6

86
Rn

4s24p6

▲ The noble gases each have eight 
valence electrons except for helium, 
which has two. They have full outer 
quantum levels and are particularly 
stable and unreactive.
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is a very important factor. For this reason, the densities of the elements generally follow a fairly 
 well- defined trend: The density of elements tends to increase as we move down a column in the periodic 
table. For example, consider the densities of several elements in the column that includes aluminum in 
the  periodic table:

r = 85 pm
d = 2.34 g/cm3

r = 143 pm
d = 2.70 g/cm3

r = 135 pm
d = 5.91 g/cm3

r = 166 pm
d = 7.31 g/cm3

aluminum

13
Al

boron

5
B

31

Ga

indium

49
In

gallium

Density increases as you move down a column

B Al

Ga In

As we move down the column in the periodic table, the density of the elements increases even 
though the radius generally increases as well (with the exception of Ga whose radius decreases a bit). 
Why? Because the mass of each successive atom increases even more than its volume does. As we move down 
a column in the periodic table, the additional protons and neutrons add more mass to the atoms. This 
increase in mass is greater than the increase in volume, resulting in a higher denstity.

The densities of elements and the radii of their atoms are examples of periodic properties. A periodic 
property is one that is generally predictable based on an element’s position within the periodic table. In 
this chapter, we examine several periodic properties of elements, including atomic radius, ionization 
energy, and electron affinity. As we do, we will see that these properties—as well as the overall arrange-
ment of the periodic table—are explained by quantum-mechanical theory, which we first examined in 
Chapter 2. Quantum-mechanical theory explains the electronic structure of atoms—this in turn determines 
the properties of those atoms.

Notice again that structure determines properties. The arrangement of elements in the periodic 
table—originally based on similarities in the properties of the elements—reflects how electrons fill 
quantum-mechanical orbitals. Understanding the structure of atoms as explained by quantum mechan-
ics allows us to predict the properties of elements from their position on the periodic table. If we need a 
metal with a high density, for example, we look toward the bottom of the periodic table. Platinum (as we 
saw previously) has a density of 21.4 g>cm3. It is among the densest metals and is found near the bottom 
of the periodic table. If we need a metal with a low density, we look toward the top of the periodic table. 
Aluminum is among the least dense metals and is found near the top of the periodic table.

 3.2 The Periodic Law and the Periodic Table

Prior to the 1700s, the number of known elements was relatively small, consisting mostly of the metals 
used for coinage, jewelry, and weapons. From the early 1700s to the mid-1800s, however, chemists dis-
covered over 50 new elements. The first attempt to organize these elements according to similarities in 
their properties was made by the German chemist Johann Döbereiner (1780–1849), who grouped ele-
ments into triads: A triad consisted of three elements with similar properties. For example, Döbereiner 
formed a triad out of barium, calcium, and strontium, three fairly reactive metals. About 50 years later, 
English chemist John Newlands (1837–1898) organized elements into octaves, in analogy to musical 
notes. When arranged this way, the properties of every eighth element were similar, much as every eighth 
note in the musical scale is similar. Newlands endured some ridicule for drawing an analogy between 
chemistry and music, including the derisive comments of one colleague who asked Newlands if he had 
ever tried ordering the elements according to the first letters of their names.
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CHAPTER 

1 Atoms

W HAT DO YOU THINK IS THE MOST 

powerful idea in all of human knowledge? 

There are, of course, many possible answers to 

this question—some practical, some philosophical, and some 

scientific. If we limit ourselves only to scientific answers, mine 

would be this: The properties of matter are determined by the 

structure of the atoms and molecules that compose it. Atoms 

and molecules determine how matter behaves—if they were 

different, matter would be different. The structure of helium 

atoms determines how helium behaves; the structure of water molecules determines how water 

behaves; and the structures of the molecules that compose our bodies determine how our bodies 

behave. The understanding of matter at the particulate level gives us unprecedented control over 

that matter. For example, our understanding of the details of the molecules that compose living 

organisms has revolutionized biology over the last 50 years.

 1.1  A Particulate View of the World: Structure  
Determines Properties

As I sat in the “omnimover” and listened to the narrator’s voice telling me that I was shrinking down to the 
size of an atom, I grew apprehensive but curious. Just minutes before, while waiting in line, I witnessed 
what appeared to be full-sized humans entering a microscope and emerging from the other end many 
times smaller. I was 7 years old and I was about to ride Adventure Through Inner Space, a Disneyland ride 
(in Tomorrowland) that simulated the process of shrinking down to the size of an atom. The ride began 
with darkness and shaking, but then the shaking stopped and giant snowflakes appeared. The narrator 
explained that we were in the process of shrinking to an ever-smaller size (which explains why the snow-
flakes grew larger and larger). Soon, we entered the wall of the snowflake itself and began to see water 

KEY CONCEPT VIDEO
Structure Determines 
Properties

▶

“The first principles of the universe are 

atoms and empty space; everything else 

is merely thought to exist.”

—Roger Joseph Boscovich (1711–1787)
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depends on chemical reactions that occur within its muscles, and the rates of those reactions—how fast 
they occur—are highly sensitive to temperature. In other words, when the temperature drops, the reac-
tions that produce movement in the lizard occur more slowly; therefore, the movement itself slows down. 
When reptiles get cold, they become lethargic, unable to move very quickly. For this reason, reptiles try 
to maintain their body temperature within a narrow range by moving between sun and shade.

The ability to understand and control reaction rates is important not only to reptile movement but to 
many other phenomena as well. For example, a successful rocket launch depends on the rate at which 
fuel burns—too quickly and the rocket can explode, too slowly and it will not leave the ground.  Chemists 
must always consider reaction rates when synthesizing compounds. No matter how stable a compound 
might be, its synthesis is impossible if the rate at which it forms is too slow. As we have seen with 
 reptiles, reaction rates are important to life. The human body’s ability to switch a specific reaction on or 
off at a specific time is achieved largely by controlling the rate of that reaction through the use of  enzymes 
(biological molecules that we explore more fully in Section 14.8). Knowledge of reaction rates is not only 
practically important—giving us the ability to control how fast a reaction occurs—but also theoretically 
important. As you will see in Section 14.7, the rate of a reaction can tell us much about how the reaction 
occurs on the molecular scale.

 14.2 Rates of Reaction and the Particulate Nature of Matter

We have seen throughout this book that matter is composed of particles (atoms, ions, and molecules). 
The simplest way to begin to understand the factors that influence a reaction rate is to think of a  chemical 
reaction as the result of a collision between these particles. This is the basis of the collision model, which 
we cover in more detail in Section 14.6. For example, consider the following simple generic reaction 
 occurring in the gaseous state:

A ¬ A + B ¡ A ¬ B + A

According to the collision model, the reaction occurs as a result of a collision between A-A particles and 
B particles.

A
A B

The rate at which the reaction occurs—that is, how many particles react per unit time—depends on sev-
eral factors: (a) the concentration of the reacting particles; (b) the temperature; and (c) the structure and 
relative orientation of the reacting particles. We examine each of these individually.

The Concentration of the Reactant Particles
We saw in Chapter 10 that we can model a gas as a collection of particles in constant motion. The parti-
cles frequently collide with one another and with the walls of their container. The greater the number of 
particles in a given volume—that is, the greater their concentration—the greater the number of collisions 
per unit time. Since a chemical reaction requires a collision between particles, the rate of the reaction 
depends on the concentration of the particles.

The first person to accurately measure this effect was Ludwig Wilhelmy (1812–1864). In 1850, he 
measured how fast sucrose, upon treatment with acid, hydrolyzed (broke apart) into glucose and fruc-
tose. This reaction occurred over several hours, and Wilhelmy was able to show how the rate  depended 
on the initial amount of sugar present—the greater the initial amount, the faster the initial rate. We 
more thoroughly examine the relationship between reaction rate and reactant concentration in 
 Section 14.4.
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 18.7 Entropy Changes in Chemical Reactions: Calculating �S rxn°  

We now turn our attention to predicting and quantifying entropy and entropy changes in a sample of matter. 
As we examine this topic, we again encounter the theme of this text: Structure determines properties. In this 
case, the property we are interested in is entropy. In this section we see how the structure of the particles 
that compose a particular sample of matter determines the entropy that the sample possesses at a given 
 temperature and pressure.
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Which pair is not a conjugate acid–base pair?

(a) (CH3)3N; (CH3)3NH+ (b) H2SO4; H2SO3 (c) HNO2; NO2
-

Conjugate Acid–Base Pairs
16.1 

Cc
Conceptual
Connection

 16.4 Acid Strength and Molecular Structure

We have learned that a Brønsted–Lowry acid is a proton [H+] donor. Now we explore why some 
 hydrogen-containing molecules act as proton donors while others do not. In other words, we explore how 
the structure of a molecule affects its acidity. Why is H2S acidic while CH4 is not? Or why is HF a weak acid 
while HCl is a strong acid? We divide our discussion about these issues into two categories: binary acids 
(those containing hydrogen and only one other element) and oxyacids (those containing hydrogen 
bonded to an oxygen atom that is bonded to another element).

Binary Acids
Consider the bond between a hydrogen atom and some other generic element (which we will call Y):

H ¬ Y

The factors affecting the ease with which this hydrogen is donated (and therefore acidic) are the polarity 
of the bond and the strength of the bond.

Bond Polarity In order for HY to be acidic, the H ¬ Y bond must be polarized with the hydrogen atom 
as the positive pole. Recall from Chapter 5 that we indicate bond polarity using the following notation:

Yd−d+H

This requirement makes physical sense because the hydrogen atom must be lost from the acid as a 
 positively charged ion (H+). A partial positive charge on the hydrogen atom facilitates its loss.

Consider the following three bonds and their corresponding dipole moments:

LiH

Not acidic

CH

Not acidic

FH

Acidic

LiH is ionic with the negative charge on the hydrogen atom; therefore, LiH is not acidic. The C ¬ H bond is 
virtually nonpolar because the electronegativities of carbon and hydrogen are similar; therefore, C ¬ H 
is not acidic. In contrast, the H ¬ F bond is polar with the positive charge on the hydrogen atom. HF is 
an acid. This is because the partial positive charge on the hydrogen atom makes it easier for the hydro-
gen to be lost as an H+ ion.

Bond Strength The strength of the H ¬ Y bond also affects the strength of the corresponding acid. As 
you might expect, the stronger the bond, the weaker the acid. The more tightly the hydrogen atom is 
held, the less likely it is to come off. We can see the effect of bond strength by comparing the bond 
strengths and acidities of the hydrogen halides:

Acid Bond Energy (kJ ,mol) Acid Strength

H ¬ F 565 Weak

H ¬ Cl 431 Strong

H ¬ Br 364 Strong
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Build students’ 21st-century skills to set them 
up for success.

Data Interpretation and Analysis Questions at the end of 
each chapter allow students to use real data to develop  
21st-century problem-solving skills. These in-depth exercises 
give students practice reading graphs, digesting tables, and 
making data-driven decisions. Find these questions at the end 
of every chapter as well as in the item library of 
MasteringChemistry™.

364 Chapter 8 Introduction to Solutions and Aqueous Reactions

DATA INTERPRETATION AND ANALYSIS
 108.  In April 2014, in an effort to save money, officials in Flint, 

 Michigan,  changed their water source from Lake Huron to the 
Flint River. In subsequent months, residents began complaining 
about	the	quality	of	the	water,	and	General	Motors	(which	has	an	
engine plant in Flint) stopped using the water in manufacturing 
because of its corrosiveness. That corrosiveness was causing prob-
lems that would soon fuel a national outrage. The water flowed 
through pipes to taps in homes, and as it flowed through the pipes, 
many of which contained lead, the corrosive water became con-
taminated with lead. Routine  monitoring of the tap water in select 
homes did not reveal the magnitude of the problem because sam-
ples were collected only after preflushing the tap (allowing the 
water to run for a time).  
A Virgina Tech professor and his students began an independent 
test of the water coming from Flint’s taps and got much different 
results by analyzing the water that initially came from the taps 
(first draw). Their results—which showed elevated lead levels in 
the tap water—ultimately forced  officials to switch back to the 
Lake Huron water source.

The following table shows a set of data collected by the 
 Virginia Tech team. The lead levels in water are expressed in 
units of parts per billion (ppb). 1 ppb = 1 g Pb>109 parts 
 solution. Examine the data and answer the questions that follow.

 a. Determine the average value of lead for first draw, 45-second 
flush, and 2-minute flush (round to three significant figures).

 b. Do the data support the idea that running the tap water before 
taking a sample made the lead levels in the water appear 
lower? Why might this occur?

 c. The EPA requires water providers to monitor drinking water 
at customer taps. If lead concentrations exceed 15 ppm in 10% 
or more of the taps sampled, the water provider must notify 
the customer and take steps to control the corrosiveness of the 
water. If the water provider in Flint had used first-draw 
 samples to monitor lead levels, would they have been required 
to take action by EPA requirements? If the Flint water 
 provider used 2-min flush samples, would they have had to 
take action? Which drawing technique do you think more 
closely mimics the way residents actually use their water?

 d. Using the highest value of lead from the first-draw data set, 
and assuming a resident drinks 2 L of water per day, calculate 
the mass of lead that the resident would consume over the 
course of one year. (Assume the water has a density of  
1.0 g>mL.)

Sample #
Lead Level  

1st draw (ppb)
Lead Level  

45 sec flush (ppb)
Lead Level  

2 min flush (ppb)

1 0.344 0.226 0.145

2 8.133 10.77 2.761

3 1.111 0.11 0.123

4 8.007 7.446 3.384

5 1.951 0.048 0.035

6 7.2 1.4 0.2

7 40.63 9.726 6.132

8 1.1 2.5 0.1

9 10.6 1.038 1.294

10 6.2 4.2 2.3

11 4.358 0.822 0.147

12 24.37 8.796 4.347

13 6.609 5.752 1.433

14 4.062 1.099 1.085

15 29.59 3.258 1.843

Source: FlintWaterStudy.org (2015) “Lead Results from Tap Water Sampling in Flint, 
 Michigan, during the Flint Water Crisis”

Lead Levels in Samples of Flint Tap Water
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Questions for Group Work 
allow students to collaborate 
and apply problem-solving 
skills on questions covering 
multiple concepts. The 
questions can be used in or out 
of the classroom, and the goal is 
to foster collaborative learning 
and encourage students to work 
together as a team to solve 
problems. All questions for 
group work are pre-loaded into 
Learning Catalytics™ for ease 
of assignment.

156 Chapter 3 Periodic Properties of the Elements

CONCEPTUAL PROBLEMS
131. Imagine that in another universe, atoms and elements are identi-

cal to ours, except that atoms with six valence electrons have 
particular stability (in contrast to our universe where atoms with 
eight valence electrons have particular stability). Give an exam-
ple of an element in the alternative universe that corresponds to:

 a. a noble gas
 b. a reactive nonmetal
 c. a reactive metal

 132.  The outermost valence electron in atom A experiences an 
 effective nuclear charge of 2+ and is on average 225 pm from the 
 nucleus. The outermost valence electron in atom B  experiences 
an effective nuclear charge of 1+ and is on average 175 pm from 
the nucleus. Which atom (A or B) has the higher first ionization 
 energy? Explain.

133. Determine whether each statement regarding penetration and 
shielding is true or false. (Assume that all lower energy orbitals 
are fully occupied.)

 a. An electron in a 3s orbital is more shielded than an electron in 
a 2s orbital.

 b. An electron in a 3s orbital penetrates into the region occupied 
by core electrons more than electrons in a 3p orbital.

 c. An electron in an orbital that penetrates closer to the nucleus 
will always experience more shielding than an electron in an 
orbital that does not penetrate as far.

 d. An electron in an orbital that penetrates close to the nucleus 
will tend to experience a higher effective nuclear charge than 
one that does not.

 134.  Give a combination of four quantum numbers that could be 
 assigned to an electron occupying a 5p orbital. Do the same for 
an electron occupying a 6d orbital.

135. Use the trends in ionization energy and electron affinity to 
 explain why calcium fluoride has the formula CaF2 and not Ca2F 
or CaF.

Discuss these questions with the group and record your consensus 
answer.

 136.  In a complete sentence, describe the relationship between shield-
ing and penetration.

 137. Play a game to memorize the order in which orbitals fill. Have 
each group member in turn state the name of the next orbital to 
fill and the maximum number of electrons it can hold (for 
 example, “1s two,” “2s two,” “2p six”). If a member gets stuck, 
other group members can help, consulting Figure 3.8 and the 
 accompanying text summary if necessary. However, when a 
member gets stuck, the next player starts back at “1s two.” Keep 
going until each group member can list all the orbitals in order 
up to “6s two.”

 138.  Sketch a periodic table (without element symbols). Include the 
correct number of rows and columns in the s, p, d, and f blocks. 
Shade in the squares for elements that have irregular electron 
configurations.

 139. In complete sentences, explain: a) why Se2 -  and Br- are about the 
same size; b) why Br- is slightly smaller than Se2 - ; and c) which 
singly charged cation you would expect to be approximately the 
same size as Se2 -  and Br- and why.

 140.  Have each member of your group sketch a periodic table indicat-
ing a periodic trend (atomic size, first ionization energy, metallic 
character, etc.). Have each member present his or her table to the 
rest of the group and explain the trend based on concepts such as 
orbital size or effective nuclear charge.

QUESTIONS FOR GROUP WORK

DATA INTERPRETATION AND ANALYSIS
141. The following graphs show the first ionization energies and 

 electron affinities of the period 3 elements. Refer to the graphs to 
answer the questions that follow.

Na Mg Al Si P S Cl Ar

1600

1400

1200

1000

800

600

400

200

0

Element

Io
ni

za
ti

on
 E

ne
rg

y 
(k

J/
m

ol
)

▲ First Ionization Energies of Period 3 Elements
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▲ Electron Affinities of Period 3 Elements

Active Classroom Learning
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NEW INTERACTIVES! Conceptual Connections and  Self-Assessment Quizzes are now embedded for students within eText 2.0! With one 

click on the eText
2.0

 icon, these activities are brought to life, allowing students to study on their own and test their understanding in real-time. 

Complete with answer-specific feedback, these interactives help students extinguish misconceptions and deepen their understanding of important 
concepts and topics. Quizzes are algorithmically coded into MasteringChemistry™ to allow students to practice the types of questions they will 
encounter on the ACS or other exams. All Conceptual Connections are also embedded and interactive in eText 2.0 and are assignable activities 
 MasteringChemistry™.

Engage students in chemistry like never 
before with an interactive eText 2.0.

Conceptual Connection

Self-Assessment Quiz
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Embedded Interactive videos create a 
dynamic learning experience in eText 2.0.

Key Concept Videos combine artwork 
from the textbook with 2D and 3D 
animations to create a dynamic  on-screen 
viewing and learning experience. These 
short videos include narration and brief 
live-action clips of author  Nivaldo Tro 
explaining the key concepts of each 
 chapter of Chemistry: Structure and 
 Properties. All Key Concept Videos  
are embedded and interactive in 

eText
2.0

  
and are assignable activities 
 MasteringChemistry™.

Interactive Worked Examples are digital 
versions of select worked examples from 
the text that make Tro’s unique problem- 
solving strategies interactive. These 
instruct students how to break down 
problems using Tro’s “Sort, Strategize, 
Solve, and Check” technique. These 
problems are incorporated into the 

eText
2.0

 
reading experience and are  
available in MasteringChemistry™  
as assignable activities.
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Teaching Modules and Learning Catalytics™ 
in MasteringChemistry™ ensure student 
engagement before, during, and after class.

With questions specific to Tro’s Structure and Properties, 
Learning Catalytics™ generates class discussion, 
customizes your lecture, and promotes peer-to-peer 
learning with real-time analytics. MasteringChemistry™ 
with eText 2.0 now provides Learning Catalytics™—the 
interactive student response tool that uses students’ 
smartphones, tablets, or laptops to engage them in more 
sophisticated tasks and individual and group problem-
solving. Instructors can:

• NEW! Upload a full PowerPoint® deck for easy 
creation of slide questions.

• NEW! Team names are no longer case sensitive.

• Help students develop critical thinking skills.

• Monitor responses to find out where students are 
struggling.

• Rely on real-time data to adjust teaching strategy.

• Automatically group students for discussion, 
teamwork, and peer-to-peer learning.

Tro’s Questions for Group Work can be found in 
Learning Catalytics™ so that students can work 
these questions in groups.

Ready-To-Go Teaching Modules provide 
instructors with easy-to-use tools for teaching 
the toughest topics in chemistry. These modules 
demonstrate how your colleagues effectively use 
all the resources Pearson has to offer to 
accompany Chemistry: Structure and Properties. 

Ready-to-Go Teaching Modules were 
created for and by instructors to provide easy-to-
use assignments for before, during, and after 
class. Assets include in-class activities and 
questions in Learning Catalytics™.
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The Chemistry Primer and Dynamic Study 
modules encourage students to come to class 
prepared.

66 Dynamic Study Modules help students study 
effectively on their own by continuously assessing 
their activity and performance in real time. Here’s 
how it works: students complete a set of questions 
with a unique answer format that also asks them to 
indicate their confidence level. Questions repeat 
until the student can answer them all correctly and 
confidently. Study modules are available as graded 
assignments prior to class and are accessible on 
smartphones, tablets, and computers. 

Topics include:

• Key math skills

• General chemistry concepts such as phases of 
matter, redox reactions, and acids and bases 

• Nuclear chemistry 

• Organic and biochemistry

NEW! The Chemistry Primer helps students remediate their 
chemistry math skills and prepare for their first college 
chemistry course.

• Pre-built Assignments get students up-to-speed at the 
beginning of the course.

• Math is covered in the context of chemistry, basic 
chemical literacy, balancing chemical equations, mole 
theory, and stoichiometry.

• Scaled to students’ needs, remediation is only suggested 
to students that perform poorly on initial assessment.

• Remediation includes tutorials, wrong-answer specific 
feedback, video instruction, and step-wise scaffolding to 
build students’ abilities.
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Instructor and student supplements

Solutions Manual 0134460693 / 9780134460697
The solution manual contains complete, step-by-step solutions to end-of-chapter problems. 

Student’s Selected Solutions Manual 0134460677 / 9780134460673
The selected solution manual for students contains complete, step-by-step solutions to 
 selected odd-numbered end-of-chapter problems.

Instructor Resource Manual (Download only) 0134549422 / 9780134549422
For download only, the Instructor Resource Manual is intended as a resource for both new 
and experienced teachers. It includes learning objectives, chapter reviews, and answers 
to the texts’ questions. The  Instructor Resource Manual also includes discussion topics 
and  advice about how to integrate visual supplements  (including the on-line resources), 
 questions and various other ideas for the classroom. 

Instructor Resource Materials (Download only) 0134460723 / 9780134460727
The material available for download includes:

•	 All	illustrations,	tables,	and	photos	from	the	text	in	JPEG	format
•	 	Four	pre-built	PowerPoint®	Presentations	(lecture,	worked		examples,	images,	 

CRS/clicker	questions)
•	 Interactive	animations,	movies,	and	3D	molecules
•	 TestGen	computerized	software	with	the	TestGen	version	of	the	Testbank
•	 Word.doc	files	of	the	Test	Item	File

Laboratory Manual 0134616456 / 9780134616452
Prepared	by	Daphne	Norton	of	the	University	of	Georgia.	This	manual	contains	over	twenty	
experiments	designed	to	complement	an	atoms	first	approach.	You	can	also	customize	
these	labs	through	Pearson	Custom	Library.
For more information, visit
http://www.pearsoncustom.com/custom-library.

Study	Guide 0134460685 / 9780134460680
This Study Guide was written specifically to assist students using Structure and  Properties. 
It presents the major concepts, theories, and applications discussed in the text in a 
 comprehensive and  accessible manner for students. It contains learning objectives, chapter 
summaries and outlines, as well as examples, self tests and concept questions.

MasteringChemistry™	with	Pearson	eText	2.0—
Instant	Access

0134565096 / 9780134565095
This product includes all of the resources of MasteringChemistry™ plus the now fully 
 mobile eText 2.0. eText 2.0 mobile app offers offline access and can be downloaded for 
most	iOS	and	Android	phones/tablets	from	the	Apple	App	Store	or	Google	Play.	Added	
 integration brings videos and other rich media to the student’s reading experience. 

MasteringChemistry™	from	Pearson	is	the	leading	online	homework,	tutorial,	and	
 assessment system, designed to improve results by engaging students with powerful 
 content. Instructors ensure students arrive ready to learn by assigning educationally 
 effective	content	and	encourage	critical	thinking	and	retention	with	in-class	resources	 
such	as	Learning	Catalytics™.	Ready-to-Go	Teaching	Modules	created	for	and	by	instructors	
provide a guide for easy-to-use assignments for before and after class plus in-class 
 activities and questions in Learning Catalytics™. Students can further master concepts 
through		traditional	and	adaptive	homework	assignments	that	provide	hints	and	answer-
specific	feedback.	The	Mastering™	gradebook	records	scores	for	all	automatically-graded	
assignments in one place, while diagnostic tools give instructors access to rich data to 
assess student understanding and misconceptions.

URL: http://www.masteringchemistry.com

Modified	MasteringChemistry™	with	Pearson	
eText	2.0—Instant	Access

0134554485 / 9780134554488

URL: http://pearsonmastering.com
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The $125 million Mars Climate Orbiter was lost in the Martian atmosphere in 1999 because of a unit mix-up.
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3

CHAPTER 

E Essentials: Units, 
Measurement, and 
Problem Solving

E.1 The Metric Mix-up: A $125 Million Unit Error

On December 11, 1998, NASA launched the Mars Climate Orbiter, which was to become the first weather 
satellite for a planet other than Earth. The Orbiter’s mission was to monitor the Martian atmosphere and to 
serve as a communications relay for the Mars Polar Lander, a probe that was to follow the Orbiter and land 
on the planet’s surface three weeks later. Unfortunately, the mission ended in disaster. A unit mix-up caused 
the Orbiter to enter the Martian atmosphere at an altitude that was too low. Instead of settling into a stable 
orbit, the Orbiter likely disintegrated. The cost of the failed mission was estimated at $125 million.

There were hints of trouble several times during the Orbiter’s nine-month cruise from Earth to Mars. 
Several adjustments made to its trajectory seemed to alter the course of the Orbiter less than expected. As the 
Orbiter neared the planet on September 8, 1999, discrepancies emerged about its trajectory. Some of the data 
indicated that the satellite was approaching Mars on a path that would place it too low in the Martian atmo-
sphere. On September 15, engineers made the final adjustments that were supposed to put the Orbiter  
226 km above the planet’s surface. About a week later, as the Orbiter entered the atmosphere, communica-
tions were lost. The Orbiter had disappeared.

Later investigations showed that the Orbiter had come within 57 km of the planet surface  
(Figure E.1 ▶ on the next page), an altitude that was too low. If a spacecraft enters a planet’s atmosphere 
too close to the planet’s surface, friction can cause the spacecraft to burn up. The on-board computers that 

QUANTIFICATION IS THE ASSIGNMENT  

of a number to some property of a substance or 

thing. For example, when we say that a pencil is 

16 cm long, we assign a number to its length—we quantify 

how long it is. Quantification is among the most powerful 

tools in science. It requires the use of units, agreed-upon 

quantities by which properties are quantified. We used the 

unit centimeter in quantifying the length of the pencil. People all over the world agree about 

the length of a centimeter; therefore, we can use that standard to specify the length of any 

object. In this chapter, we look closely at quantification and problem solving. Science would be 

much less powerful without these tools.

“The eternal mystery of the world is its 

comprehensibility.”

—Albert Einstein (1879–1955)
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4 Chapter E Essentials: Units, Measurement, and Problem Solving

controlled the trajectory corrections were programmed in metric units (newton # second), but the ground 
engineers entered the trajectory corrections in English units (pound # second). The English and the metric 
units are not equivalent (1 pound # second = 4.45 newton # second). The corrections that the ground engi-
neers entered were 4.45 times too small and did not alter the trajectory enough to keep the Orbiter at a 
sufficiently high altitude. In chemistry as in space exploration, units are critical. If we get them wrong, the 
consequences can be disastrous.

E.2 The Units of Measurement

The two most common unit systems are the metric system, used in most of the world, and the  
English system, used in the United States. Scientists use the International System of Units (SI), 
which is based on the metric system.

The Standard Units
Table E.1 shows the standard SI base units. For now, we focus on the first four of these units: the meter, the 
standard unit of length; the kilogram, the standard unit of mass; the second, the standard unit of time; and 
the kelvin, the standard unit of temperature.

Mars

Trajectory
correction here

226 km

57 km

Actual trajectory

Estimated trajectory

The abbreviation SI comes from the 
French, Système International 
d’Unités.

▶ FIGURE E.1 The Metric Mix-up  
The top trajectory represents the  
expected Mars Climate Orbiter 
trajectory; the bottom trajectory 
represents the actual one.

TABLE E.1 SI Base Units

Quantity Unit Symbol

Length Meter m

Mass Kilogram kg

Time Second s

Temperature Kelvin K

Amount of substance Mole mol

Electric current Ampere A

Luminous intensity Candela cd

The velocity of light in a vacuum is 
3.00 * 108 m>s.

The Meter: A Measure of Length
A meter (m) is slightly longer than a yard (1 yard is 36 inches while 1 meter is 39.37 inches). Thus, a 
100-yard football field measures only 91.4 meters. The meter was originally defined as 1>10,000,000 of the 
distance from the equator to the North Pole (through Paris). The International Bureau of Weights and  
Measures now defines it more precisely as the distance light travels through a vacuum in a designated  period 
of time, 1>299,792,458 second. Scientists commonly deal with a wide range of lengths and distances. The 
separation between the sun and the closest star (Proxima Centauri) is about 3.8 * 1016 m, while many 
chemical bonds measure about 1.5 * 10-10 m.

Scientific notation is reviewed in 
Appendix IA.
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E.2 The Units of Measurement 5

The Kilogram: A Measure of Mass
The kilogram (kg), defined as the mass of a metal cylinder kept at the International Bureau of Weights and 
Measures at Sèvres, France, is a measure of mass, a quantity different from weight. The mass of an object is a 
measure of the quantity of matter within it, while the weight of an object is a measure of the gravitational pull 
on its matter. If you could weigh yourself on the moon, for example, its weaker gravity would pull on you with 
less force than does Earth’s gravity, resulting in a lower weight. A 130-pound (lb) person on Earth would weigh 
only 21.5 lb on the moon. However, the person’s mass—the quantity of matter in his or her body—remains the 
same on every planet. One kilogram of mass is the equivalent of 2.205 lb of weight on Earth, so if we express 
mass in kilograms, a 130-lb person has a mass of approximately 59 kg and this book has a mass of about 2.5 kg. 
Another common unit of mass is the gram (g). One gram is 1>1000 kg. A nickel (5¢) has a mass of about 5 g.

The Second: A Measure of Time
If you live in the United States, the second (s) is perhaps the most familiar SI unit. The International Bureau 
of Weights and Measures originally defined the second in terms of the day and the year, but a second is now 
defined more precisely as the duration of 9,192,631,770 periods of the radiation emitted from a certain tran-
sition in a cesium-133 atom. (We discuss transitions and the emission of radiation by atoms in Chapter 2.) 
Scientists measure time on a large range of scales. The human heart beats about once every second; the age 
of the universe is estimated to be about 4.32 * 1017 s (13.7 billion years); and some molecular bonds break 
or form in time periods as short as 1 * 10-15 s.

The Kelvin: A Measure of Temperature
The kelvin (K) is the SI unit of temperature. The temperature of a sample of matter is a measure of the 
amount of average kinetic energy—the energy due to motion—of the atoms or molecules that compose the 
matter. The molecules in a hot glass of water are, on average, moving faster than the molecules in a cold 
glass of water. Temperature is a measure of this molecular motion.

Temperature also determines the direction of thermal energy transfer, or what we commonly call heat. 
Thermal energy transfers from hot objects to cold ones. For example, when you touch another person’s 
warm hand (and yours is cold), thermal energy flows from that person’s hand to yours, making your hand 
feel warmer. However, if you touch an ice cube, thermal energy flows out of your hand to the ice, cooling 
your hand (and possibly melting some of the ice cube).

Figure E.2 ▶ shows the three temperature scales. The most common in the United States is the 
 Fahrenheit scale (°F), shown on the left. On the Fahrenheit scale, water freezes at 32 °F and boils at 212 °F 
at sea level. Room temperature is approximately 72 °F. The Fahrenheit scale was originally  determined by 
assigning 0 °F to the freezing point of a concentrated saltwater  solution and 96 °F to 
normal body temperature. Normal body temperature was later measured more 
 accurately to be 98.6 °F.

Scientists and citizens of most countries other than the United States typically 
use the Celsius (°C) scale, shown in the middle of Figure E.2. On this scale, pure 
water freezes at 0 °C and boils at 100 °C (at sea level). Room temperature is 
 approximately 22 °C. The Fahrenheit scale and the Celsius scale differ both in the 
size of their respective degrees and the temperature each designates as “zero.” Both 
the Fahrenheit and Celsius scales allow for negative temperatures.

The SI unit for temperature, as we have seen, is the kelvin, shown on the right 
in Figure E.2. The Kelvin scale (sometimes also called the absolute scale) avoids  
negative temperatures by assigning 0 K to the coldest temperature possible, absolute 
zero. Absolute zero (-273 °C or -459 °F) is the temperature at which molecular 
motion virtually stops. Lower temperatures do not exist. The size of the kelvin is 

▲ A nickel (5 cents) weighs about 
5 grams.

-459 °F -273 °C 0.00 K Absolute zero

32 °F 0.00 °C Water freezes

212 °F

180
Fahrenheit
degrees

100
Celsius
degrees

100
kelvins

100 °C 373 K

273 K

Water boils

Temperature Scales

Fahrenheit Celsius Kelvin

▶ FIGURE E.2 Comparison of the Fahrenheit, Celsius, and Kelvin 
Temperature Scales The Fahrenheit degree is five-ninths the size 
of the Celsius degree and the kelvin. The zero point of the Kelvin 
scale is absolute zero (the lowest possible temperature), whereas 
the zero point of the Celsius scale is the freezing point of water.
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6 Chapter E Essentials: Units, Measurement, and Problem Solving

identical to that of the Celsius degree—the only difference is the temperature that each designates as zero. 
You can convert between the temperature scales with these formulas:

 °C =
(°F - 32)

1.8

 K = °C + 273.15

Note that we refer to Kelvin 
temperatures in kelvins (not “degrees 
Kelvin”) or K (not °K).

The Celsius Temperature Scale

0 °C – Water freezes 10 °C – Brisk fall day 22 °C – Room temperature 45 °C – Summer day in Death Valley

Prefix Multipliers
Scientific notation (see Appendix IA) allows us to express very large or very small quantities in a compact 
manner by using exponents. For example, we write the diameter of a hydrogen atom as 1.06 * 10-10 m. 
The International System of Units uses the prefix multipliers shown in Table E.2 with the standard units. 

EXAMPLE E.1
Converting between Temperature Scales

A sick child has a temperature of 40.00 °C. What is the child’s temperature in (a) K and (b) °F?

SOLUTION

(a) Begin by finding the equation that relates the quantity that is given (°C) and the 
quantity you are trying to find (K).

Since this equation gives the temperature in K directly, substitute in the correct value 
for the temperature in °C and calculate the answer.

 K = °C + 273.15

 K = °C + 273.15
 K = 40.00 + 273.15 = 313.15 K

(b) To convert from °C to °F, find the equation that relates these two quantities.

Since this equation expresses °C in terms of °F, solve the equation for °F.

Now substitute °C into the equation and calculate the answer.
Note: The number of digits reported in this answer follows significant figure conventions, 
covered later in this section.

°C =
(° F - 32)

1.8

 °C =
(°F - 32)

1.8
 1.8(°C) = (°F - 32)

 °F = 1.8 (°C) + 32

°F = 1.8 (°C) + 32
°F = 1.8 (40.00 °C) + 32 = 104.00 °F

FOR PRACTICE E.1

Gallium is a solid metal at room temperature but will melt to a liquid in your hand. The melting point of gallium is 85.6 °F. What is this 
temperature on (a) the Celsius scale and (b) the Kelvin scale?

Answers to For Practice and For More Practice problems are in Appendix IV.
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E.2 The Units of Measurement 7

These multipliers change the value of the unit by powers of 10 (just like an exponent does in scientific 
notation). For example, the kilometer has the prefix “kilo” meaning 1000 or 103. Therefore,

1 kilometer = 1000 meters = 103 meters

TABLE E.2 SI Prefix Multipliers

Prefix Symbol Multiplier  

exa E 1,000,000,000,000,000,000 (1018)

peta P 1,000,000,000,000,000 (1015)

tera T 1,000,000,000,000 (1012)

giga G 1,000,000,000 (109)

mega M 1,000,000 (106)

kilo k 1000 (103)

deci d 0.1 (10-1)

centi c 0.01 (10-2)

milli m 0.001 (10-3)

micro μ 0.000001 (10-6)

nano n 0.000000001 (10-9)

pico p 0.000000000001 (10-12)

femto f 0.000000000000001 (10-15)

atto a 0.000000000000000001 (10-18)

Similarly, the millimeter has the prefix “milli,” meaning 0.001 or 10-3.

1 millimeter = 0.001 meters = 10-3 meters

When we report a measurement, we choose a prefix multiplier close to the size of the quantity we are  measuring. 
For example, to state the diameter of a hydrogen atom, which is 1.06 * 10-10 m, we use picometers (106 pm) 
or nanometers (0.106 nm) rather than micrometers or millimeters. We choose the prefix multiplier that is most 
convenient for a particular number.

Prefix Multipliers
E.1 

Cc
Conceptual
Connection

What prefix multiplier is appropriate for reporting a measurement of 5.57 * 10-5 m?

Note: Answers to Conceptual Connections can be found at the end of each chapter.

Units of Volume
Many scientific measurements require combinations of units. For  example, velocities are often reported  
in units such as km>s, and densities are often reported in units of  g>cm3. Both of these units are 
derived units, combinations of other units. An important SI-derived unit for chemistry is the m3, used to 
report measurements of volume.

Volume is a measure of space. Any unit of length, when cubed (raised to the third power), becomes 
a unit of volume. The cubic meter (m3), cubic centimeter (cm3), and cubic millimeter (mm3) are all 

The eText 2.0 icon indicates that this 
feature is embedded and  interactive 
in the eText.

eText
2.0
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8 Chapter E Essentials: Units, Measurement, and Problem Solving

units of volume. The cubic nature of volume is not always intuitive, and studies have shown that our 
brains are not naturally wired to think abstractly, which we need to do in order to think about volume. 
For example, consider this question: How many small cubes measuring 1 cm on each side are required 
to construct a large cube measuring 10 cm (or 1 dm) on a side?

The answer to this question, as we can see by carefully examining the unit cube in Figure E.3 ◀, is 
1000 small cubes. When we go from a linear, one-dimensional distance to a three-dimensional volume, we 
must raise both the linear dimension and its unit to the third power (not just multiply by 3). The volume of 
a cube is equal to the length of its edge cubed:

volume of cube = (edge length)3

A cube with a 10-cm edge length has a volume of (10 cm)3 or 1000 cm3, and a cube with a 100-cm edge 
length has a volume of (100 cm)3 = 1,000,000 cm3. Other common units of volume in chemistry are the 
liter (L) and the milliliter (mL). One milliliter (10-3 L) is equal to 1 cm3. A gallon of gasoline contains 
3.785 L. Table E.3 lists some common units for volume and their equivalents.

 E.3 The Reliability of a Measurement

The reliability of a measurement depends on the instrument used to make the measurement. For example, 
a bathroom scale can reliably differentiate between 65 lb and 75 lb but probably can’t differentiate between 
1.65 and 1.75 lb. A more precise scale, such as the one a butcher uses to weigh meat, can differentiate 
 between 1.65 and 1.75 lb. The butcher shop scale is more precise than the bathroom scale. We must 
 consider the reliability of measurements when reporting and manipulating them.

Reporting Measurements to Reflect Certainty
Scientists normally report measured quantities so that the number of reported digits reflects the certainty 
in the measurement: more digits, more certainty; fewer digits, less certainty.

For example, cosmologists report the age of the universe as 13.7 billion years. Measured values like 
this are usually written so that the uncertainty is in the last reported digit. (We assume the uncertainty 
to be {1 in the last digit unless otherwise indicated.) By reporting the age of the universe as  
13.7  billion years, cosmologists mean that the uncertainty in the measurement is {0.1 billion years (or 
{100 million years). If the measurement was less certain, then the age would be reported differently. 
For example, reporting the age as 14 billion years would indicate that the uncertainty is {1 billion 
years. In general,

Scientific measurements are reported so that every digit is certain except the last, which is 
estimated.

Consider the following reported number:

5.213

certain estimated

The first three digits are certain; the last digit is estimated.
The number of digits reported in a measurement depends on the measuring device. Consider weighing 

a sample on two different balances (Figure E.4 ▶). These two balances have different levels of precision. 
The balance shown on top is accurate to the tenths place, so the uncertainty is {0.1 and the measurement 
should be reported as 10.5. The bottom balance is more precise, measuring to the ten-thousandths place, so 
the uncertainty is {0.0001 and the measurement should be reported as 10.4977 g. Many measuring instru-
ments—such as laboratory glassware—are not digital. The measurement on these kinds of instruments 
must also be reported to reflect the instrument’s precision. The usual procedure is to divide the space  
between the finest markings into ten and make that estimation the last digit reported. Example E.2 
demonstrates this procedure.

A 10-cm cube contains
1000 1-cm cubes.

10 cm

1 cm

Relationship between
Length and Volume

▲ FIGURE E.3 The Relationship  
between Length and Volume 

TABLE E.3 Common Units for 
Volume and Their Equivalents

1 liter (L) = 1000 mL = 1000 cm3

1 liter (L) = 1.057 quarts (qt)

1 U.S. gallon (gal) = 3.785 liters (L)
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E.3 The Reliability of a Measurement 9

(a)

Estimation in Weighing

Report as 10.5 g

(b)

Report as 10.4977 g

EXAMPLE E.2
Reporting the Correct Number of Digits

The graduated cylinder shown here has markings every 0.1 mL. Report the volume (which is read at 
the bottom of the meniscus) to the correct number of digits. (Note: The meniscus is the crescent-
shaped surface at the top of a column of liquid.)

Meniscus

SOLUTION

Since the bottom of the meniscus is between the 4.5 and 4.6 mL markings, mentally divide the 
space between the markings into 10 equal spaces and estimate the next digit. In this case, the  
result is 4.57 mL.

What if you estimated a little differently and wrote 4.56 mL? In general, a one-unit difference in  
the last digit is acceptable because the last digit is estimated and different people might estimate it 
slightly differently. However, if you wrote 4.63 mL, you would have misreported the measurement.

FOR PRACTICE E.2

Record the temperature on this thermometer to the correct number of digits.

Precision and Accuracy
Scientists often repeat measurements several times to increase their confidence in the result. We can 
 distinguish between two different kinds of certainty—called accuracy and precision—associated with such 
measurements. Accuracy refers to how close the measured value is to the actual value. Precision refers to 
how close a series of measurements are to one another or how reproducible they are. A series of measure-
ments can be precise (close to one another in value and reproducible) but not accurate (not close to the 
true value). Consider the results of three students who repeatedly weighed a lead block known to have a 
true mass of 10.00 g tabulated below and displayed in Figure E.5 ▶ on the next page.

  Student A Student B Student C

Trial 1 10.49 g 9.78 g 10.03 g

Trial 2 9.79 g 9.82 g 9.99 g

Trial 3 9.92 g 9.75 g 10.03 g

Trial 4 10.31 g 9.80 g 9.98 g

Average 10.13 g 9.79 g 10.01 g

▲ FIGURE E.4 Precision in  
Weighing. (a)  This balance  
is  precise to the tenths place.  
(b) This balance is  precise to  
the ten-thousandths place.

M01_TRO3936_02_SE_C0E_002-033v3.0.12.indd   9 2016/11/11   7:41 PM




